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This document is a brief summary of our notebooks and more generally of the work carried out
during our project. For more information on how the algorithms work, the results obtained and
the code of the algorithms, we invite the reader to refer to the notebooks related to each step of
our work.

1 Context and presentation of the problem

Source: Air Liquide

Air Liquide is a multinational industrial company specialized in industrial gases, particularly
used in industry, healthcare, environment, and research. Air Liquide is active in 80 countries and
employs about 67,000 people across 500 sites. As a global company, Air Liquide runs several
industrial sites all around the world. Nowadays, 21 sites in France and some more in Italy are
controlled remotely from a control center near Lyon.
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Source: Air Liquide

As for any industrial group, and particularly since Air Liquide uses remote control, it is crucial
for the group to be able to detect effectively and rapidly anomalies in the physical signals of their
machines.

Since 2016, Air Liquide has been achieving its digital revolution with a plan called Smart In-
novative Operations (SIO) in all his industries. The SIO program features four main compo-
nents: SIO.Drive (remote control of the industrial sites), SIO.Optim (optimization of production
to consume the least energy possible), SIO.Perform (analysis of the production performances) and
SIO.Predict. SIO.Predict consists in achieving predictive maintenance. It aims to detect anomalies
as soon as they appear in order to gain time and be able to repair the machine without impacting
production, therefore avoiding economic losses. As a matter of fact, Air Liquide estimates the
financial gain between e100,000 and e500,000 per anomaly detected, as detection prevents them
from having to shut down entire machines. Indeed, shutting down a machine implies halting
the customer’s otherwise uninterrupted supply or limiting the production for other customers in
order to compensate for the loss in production and be able to serve the affected customer neverthe-
less. This second option is favoured for very large industries, which are often linked directly to Air
Liquide’s factory using a pipeline, and which cannot tolerate any supply interruption. Both op-
tions mean harsh economic losses via penalties imposed to Air Liquide. By detecting an anomaly
right from its start, maintenance operations will be able to be done when the customer does not
need the gases, thus making Air Liquide’s maintenance process more secure and efficient. With
a broader perspective, predictive maintenance allows the company to drastically reduce the cost
of regular servicing: the machines are examined whenever an anomaly is detected and systematic
checks, which force a complete stop of the system, therefore decrease.

To achieve this goal, SIO.Predict uses a software called PRiSM which defines a “normal” operating
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area thanks to the past normal data and which raises an alarm when the current parameters exit
this area for a certain period of time (1st criterion). In addition, and even if the parameters stay
within the desired area, PRiSM raises an alarm if one value varies too quickly (2nd criterion).

Despite its efficiency in detecting most anomalies, Air Liquide’s implementation of PRiSM
presents two flaws. Firstly, it has got a high rate of false alerts (about 90%), making it neces-
sary for employees to constantly check PRiSM’s alerts. Secondly, and most importantly, PRiSM
fails to detect a very specific set of anomalies: those presenting slow oscillations. These anomalies
are rare but can cause major industrial issues. This second flaw is due to the algorithm used by
PRiSM: slow oscillating anomalies are too slow to be considered an anomaly (2nd criterion) but
their time period is still too short for the signal to stay out of the “normal” area for long enough
(1st criterion). Resultantly, slow-oscillating — and often highly concerning — signals cannot be
detected, or at least not before some time has passed.

This specific issue of slow anomalies is notably caused by a phenomenon called varnishing. When
the temperature increases, little crystals form in the lubrication oil (due to impurities) and hold
onto metallic parts, thereby preventing the oil from flowing. The lack of lubrication generates even
stronger friction between metallic parts, thus increasing even more the temperature. The crystals
eventually end up being detached by friction which re-establishes oil circulation and leads to a
temperature decrease, hence the oscillating movement. In 2020, a compressor almost ran out of
service due to oscillating anomalies that had not been detected in time.

Both safety and economic gains will be achieved by developing an algorithm able to detect this
type of oscillating anomalies. Solving this problem was the aim of our project, in which we devel-
oped a solution to the following question:

How can such oscillating anomalies recorded within a set of sensor data be detected with ab-
solute certainty?
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2 Our method

2.1 Forensic engineering

Let’s start by introducing Forensic Engineering. It can be defined as the retrospective investigation
into industrial malfunctions and failures. The general purpose of a forensic engineering investi-
gation is to locate one or several causes of failure in order to improve performance and avoid
another accident. As mentioned, Air Liquide’s software, PRiSM, has got difficulties detecting the
slow and frequent oscillations that may at a certain point lead to an industrial disaster with a
risk of serious injuries and significant damage to the involved machines. Applying the Forensic
approach, we collected various data from Air Liquide’s database and attempted to identify the
features best suited to detecting the problem. We had sensor data spanning over 3 years and for
13 different physical values available to us. We chose one specific temperature as the variable
of interest (main feature) for the different algorithms, since it was the one for which the issue to
detect was most obvious due to the direct correlation between the varnishing phenomenon and
the measured temperature. For some algorithms based on neural networks, other variables were
required; these are explanatory variables (features that help the prediction of points and which
must be as uncorrelated as possible).

The algorithms we coded are classification algorithms: the data collected by Air Liquide may
or may not correspond to an anomaly and are classified as such by our algorithms. Generally
speaking, the objective of classification is to predict the class y of an object x as well as possible
from observations on the latter. To help understand, let us describe for a moment the mathematical
modelling of a generic classification problem.

Let H be a measure space. To each point X corresponds a label Y ∈ {0, 1}. The goal of statistical
learning is to construct a function

h : H → {0, 1}

called a classifier, such that h(X) best predicts the label of X.

Suppose that the pair (X, Y) is derived from a draw according to a P law. For a given classifier, the
probability of misclassification is L(h) = P(Y 6= h(X)). We are therefore looking for a classifier
which minimises L(h).

If we know the law P, L(h) is minimal for the Bayes classifier: h∗(X) =

{
1 if P(Y = 1 | X) ≥ 1/2

0 otherwise
.

In general we do not know the law P but only a set of learning data (Xi, Yi)i=1,··· ,n following the
law P. Our goal is therefore to construct from these learning data a classifier ĥ which minimises
L(ĥ)− L(h∗).

Since the law P is unknown, we instead calculate the empirical probability of misclassification:

Ln(h) =
1
n

n

∑
i=1

(δ(Yi 6= h(Xi))

To a set D ⊂ F(H, {0, 1}) of classifiers we can associate the empirical risk minimisation classifier:

hmin(D) ∈ argmin h∈D Ln(h)
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Finally the quality of the approximation is:

L(hmin(D))− L(h∗) =
(

min h∈D L(h)− L(h∗)
)
+

(
L(hmin(D))−min h∈D L(h)

)

The first term is the approximation error which can be reduced by expanding the set of classifiers
studied. The second term is the estimation error, which is due to the fact that the empirical cost
has been minimized and not the true probability of misclassification. This second term tends to
increase with D.

The choice of D is therefore important since there is a balance to strike between the approximation
and estimation errors. This is why we have programmed different algorithms that explore differ-
ent types of classifiers: the LSTM, the GAN, and the quantile regression classifier. This allows us,
on the one hand to see if one type of classifier approximates better than another, and on the other
hand to obtain a better result relative to specific metrics of interest (recall and precision, as defined
later).

2.2 Our solution to the problem

The following sections present briefly the preprocessing step, as well as the five algorithms that
we implemented. For more detail, please see the specific notebook which gives more explanations,
some graphical representations and the code).

2.2.1 Preprocessing

First we needed to preprocess our data, since raw data from Air Liquide are not usable as such
by machine learning algorithms: they contain noise, outliers due to sensor faults, and long-term
variations (for example the temperature follows the natural trend of the outside temperature in-
duced by the seasons). We need to get rid of these issues in order to implement and use most of
our algorithms.

The first step was thresholding. It consists in applying thresholds on the different features we
selected (based on their relative correlation) that just replace every absurd value (error reports
from the sensors which are constant known integers) with NaN values, NaN standing for “Not a
Number”.

Then, comes the gap filling step. We filled all the gaps created either by the thresholding that
induces NaNs but also by the missing measurements that occurred during the monitoring (we
aim to obtain values at regular time intervals). Those gaps are replaced by points calculated using
a linear regression for several reasons: their impact on the global appearance of the curve will be
reduced by the other steps of the preprocessing, and this regression method is simple and is the
least computation-intensive. Finally our customer did not want us to create values out of the blue
and a linear approximation was close enough to reality to be acceptable.

The standardization step consists in highlighting the anomalies. To do that, we calculate the mean
and the standard deviation of the signal on most of the normal phases of our training dataset and
use these values to standardize the signal for every selected feature.

The signal remains full of noise and the gap filling step induced some abnormal intervals. There-
fore, we need to find a function meeting a few requirements: - Delete most of the noise - Smooth
the steep variations created by the gap filling - Keep the global tendency of the signal
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A compromise was found between the methods used and the bandwidth we wanted to work on
in order to conciliate those requirements.

Now that high frequencies were erased from the spectrum, very low frequencies had to be cleaned
out by the detrending step. This allowed us to keep only the frequencies we had to work on.

The signal — now preprocessed and cleared — could finally be fed into all of our algorithms,
either for training them or for monitoring the machine. Of course, we have strictly separated the
test set from the train set. This is crucial for the machine learning algorithms that must not be
tested on the data on which they were trained.

We decided to implement five different algorithms and then combined the results obtained using a
voting system. The first two algorithms detect the oscillations (by analysing the signal’s structure):
they are the Ruptures method and the EMD method.

2.2.2 Ruptures

Ruptures is a Python library used to detect regime changes in a signal by returning a list of break-
points. Only this library is not suitable for online operation. We decided to use the Pelt algorithm:
its main attribute is that it doesn’t need to know in advance the number of breakpoints. We opted
for optimizing the core of the Pelt algorithm so that it could adapt to online operation.

Figure 1: Ruptures-based algorithm detecting breakpoints in a test signal.

2.2.3 EMD

EMD (Empirical Mode Decomposition) is an empirical method of signal processing which decom-
poses a signal into IMFs (Intrinsic Mode Functions). A Hilbert transform of these IMFs allowed
us to obtain their amplitude, and their instantaneous frequencies. We then noticed that the weak
oscillations which caused the problem were quite obvious on these IMFs and that we could detect
them using this method.

Figure 2: IMFs of a test signal.
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Figure 3: Amplitude of the IMFs’ Hilbert transform.

The three other algorithms are neural networks: the LSTM, quantile regression, and the GAN.

2.2.4 LSTM

The Long and Short-Term Memory (LSTM) algorithm is a recurrent neural network that is able to
predict the rest of the “Température palier étage 1” signal from the available signal history (past
values) and that of other uncorrelated features (to maximize reliability) . When a signal is used as
an input of the program, the output signal predicted for each point by the LSTM will be compared
with the real one. If the two signals are different enough the input signal will be considered as
abnormal.

Figure 4: Working principle of the LSTM algorithm.

2.2.5 Quantile regression

Quantile regression is a method of regression that works on the quantiles instead of the actual
values. It is implemented through set learning using weak classifiers — trees — which, once
assembled using gradient boosting, produce a single strong classifier. The advantage is that the
method is way more robust than the standard least square regression against outliers. Indeed,
on a large set of data, quantiles better depict the curve itself. Hence, with two quantiles we can
predict an interval inside of which the values are expected to be found. And, like for the LSTM, if
a bunch of values are outside of the predicted nominal range, an alarm will be raised.
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Figure 5: Upper and lower predicted quantiles compared with the actual signal on a normal set.

2.2.6 GAN

A GAN (Generative Adversarial Network) is an unsupervised neural network which is comprised
of two neural networks competing to achieve the best results: the generator and the discriminator.
The generator’s job is to generate believable fake data from random noise in order to fool the
discriminator. The discriminator’s job is to discriminate between fake and real data being sent to
it. This implies that, once shown erroneous data or some with visible anomalies, the discriminator
will be able to detect it and raise an alarm.

Figure 6: Working principle of the GAN algorithm (source: kdnuggets.com).
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2.3 Integration to the interface

The interface is composed of several pages. The main one displays the global alarm level depend-
ing on the system’s state obtained by the voting system (and shows its state at a given time with
a month’s history). Other pages are offered in order to see the individual results of the different
algorithms.

Interface : Overview (first page).

Interface : Detailed page for the EMD.
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3 Presentation and analysis of the results

To compare our algorithms and to have an idea of their performance, we used the precision and
recall metrics. We focused on three variables:

• Tp = the number of true positive anomalies (that are detected by the algorithm as anomalies
and that are real problems)

• Fp = the number of false positive anomalies (that are detected by the algorithm as anomalies
but are not real problems)

• Fn = the number of false negative anomalies (that are not detected by the algorithm as
anomalies but are real problems)

The definitions of the recall and precision are:

• Recall = Tp
Tp+Fn

• Precision =
Tp

Tp+Fp

• F1-Score = 2
1

Recall+
1

Precision

In other words, the recall quantifies the mistakes of an algorithm when not detecting an anomaly
while the precision gives the percentage of true anomalies among all the anomalies detected.

We decided to privilege recall over precision because Air Liquide explicitly asked us to make
sure all problems were detected. Since PRiSM already raises many false alarms, precision is less
important but we still try to maximize it, if it does not impact the recall. Resultantly, recall, preci-
sion and F1-Score (that combines the two) are key parameters to evaluate the performance of our
algorithms.

3.1 Ruptures

The Ruptures method is quite different from the others: it is a rewriting of an already existing
Python library, which automatically detects the changes of behaviour in a given curve. The modi-
fications were aimed at drastically decreasing the computation time, which went from a few hours
to a few seconds. This algorithm has a recall of 1.0 and an precision of 0.75, which results in a F1
score of 0.86.

Figure 7: Ruptures-based algorithm labelling a test dataset (approx. 20,000 points).
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3.2 EMD

The EMD method is not mathematically proven and is based on empirical observations. The
algorithm detects the anomaly as soon as it happens, and the number of false positives is low, and
mostly caused by gap filling. By analyzing the last 5,000 points every 10 minutes, the EMD method
is optimally suited to real-time analysis and manages to raise relevant alarms. With a recall score
of 0.80 and an precision of 0.53, this algorithm has an **F1 score of 0.64**. The low recall in
comparison with other algorithms is not a problem: it is mainly due to the alarms stopping during
an anomaly, but the anomaly is always detected and, as the EMD works with other algorithms,
there is no detection problem at all.

Figure 8: EMD algorithm labelling a test dataset over a long period of time (approx. 135,000
points).

3.3 LSTM

Once the hyperparameters and the tolerances of the algorithm are well chosen, the LSTM algo-
rithm gives similar results to quantile regression. This may be justified by the fact that the two
methods are actually close by their operation, unlike the other algorithms. The recall obtained is
0.98 while the precision and the F1 Score are respectively 0.56 and 0.71.

Figure 9: LSTM algorithm labelling a test dataset over a long period of time (approx. 90,000 points)
presenting two anomalies.
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3.4 Quantile regression

The quantile regression method is fully mathematically proven. We get a recall of 0.99 and an
precision of 0.58. Thus, the algorithm is very robust, as it does not miss real anomalies. As for the
F1 Score, we obtain 0.73.

Figure 10: Quantile regression algorithm labelling a test dataset over a short period of time (ap-
prox. 5,000 points) presenting one anomaly.

3.5 GAN

The final method, based on neural networks, is the most abstract machine learning solution and
provides good performances. Indeed, the precision obtained is 0.67, the recall 0.98, and the F1
Score 0.80.

Figure 11: GAN algorithm labelling a test dataset (approx. 35,000 points) presenting one anomaly.
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3.6 The voting system

Given all these statistics on the algorithms, they must coordinate as a whole to detect the anomalies
in an efficient way. In order to do that, we put into place a voting system which is based on three
different types of alarms for each algorithm :

• Green: there is no anomaly

• Orange: there has been an anomaly recently

• Red: an anomaly is currently being detected by the algorithm

We then established a conditional voting system in order to give each algorithm a say in the final
decision, taking into account the specificities of each algorithm — in particular, the different ways
algorithms behave regarding the orange alerts: some often raise orange alarms within an actual
anomaly whereas others almost only use red in an abnormal sequence. Consequently, an orange
alarm raised by an algorithm of the first type is given more importance than an orange one from
the second type. The final vote system is the following :

• If there are at least two red alarms, the probability that there is a real problem is very high,
and we trigger the global alarm (red)

• Else, if there are at least three green alarms, we consider that there is no anomaly (green)

• Else, if the Ruptures-based algorithm or the GAN trigger a red alarm, we consult the three
other algorithms, and if at least one of them is in orange alarm, we trigger the global alarm
(red)

• Otherwise, we trigger the warning alarm (orange)

These performance statistics show that all five algorithms offer a recall close to 1 and precisions
all above 0.53. These figures were presented to Air Liquide’s data officer, who approved and was
satisfied with the results.
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4 Limitations of our solution and advice

4.1 Globally

The first limitation of this program is linked to the preprocessing of the data: all features are not
preprocessed, only those which have been chosen after calculating the correlation matrix. The
analysis of the correlation matrix revealed that only 5 were to be studied (plus the oil tempera-
ture for the LSTM). Furthermore to test our different algorithms we started the preprocessing by
labelling the data, describing it as normal or not. This choice was done manually according to
where we saw anomalies in the temperature data, therefore it is not perfect. This leads to some
errors when we calculate the recall and precision of the algorithms: some rightfully find errors
even if the labelling says the data has no problem. The general tendency is that our algorithms are
more precise than the labelling.

Another limitation that we have encountered is the size of the dataset: since we had 3 years of
data containing only 4 known anomalies available, this could lead to some underfitting - i.e. the
deficient training of a machine learning algorithm due to the lack of training data - in the training
of the predictors for the machine learning algorithms.

Finally, we tested our algorithms on the anomalies that were given to us; the algorithms detected
all of them but it was impossible for us to test the former on all the possible anomalies that Air
Liquide might have to face, given the limited size of the anomalous dataset we were provided
with.

Another limitation is linked to the voting system. The latter was created by comparing the perfor-
mances of every algorithm on a test dataset. Yet, the global system (including the vote) was not
tested independently and thus may have been overfitted on the test data. To solve this issue, the
global solution must be tested on a distinct dataset and the voting system ajusted if necessary.

4.2 Ruptures

4.2.1 Limitations

Considering the compromise found on the hyper-parameters of the Pelt algorithm, the computa-
tion time for a partition of 10,000 points is more than reasonable, on the order of ten seconds. As
Pelt’s algorithmic complexity is linear, increasing the number of points would therefore not be a
problem since we would then remain well below 10 minutes, the minimum time interval between
two batches of data.

The Ruptures library offers the possibility of using different cost functions: we chose the quadratic
cost function, which seemed to be the most suited for our problem (evaluation of the distance
between two points). However, it would be necessary to examine whether there is a cost function
which performs the task of detecting oscillations more optimally.

4.2.2 Advice

To obtain a more efficient algorithm which would then optimize the memory accesses and the cost
calculation, we would have needed to:

• implement the Pelt algorithm as well as the cost function in a lower level language than
Python, type C: this implementation was in progress but took us more time than expected,
so we focused on the syntactic optimization of the Python version
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• parallelize the computation of the cost function: this operation was not optimal in Python,
but should save computation time as well as server load in C

However, we recommend running the Pelt algorithm as modified by us, with Python. Indeed,
this version of the code remains very optimized and readable. In addition, it allows, through
the Ruptures library written in Python, to use other cost functions than the one conventionally
used (quadratic cost). Finally, even if we do not go through multi-processing to optimize the cost
calculation, the calculation times are still very low. It is therefore a simple, optimized and readable
version.

4.3 EMD

4.3.1 Limitations

• Empirical method with no mathematical proof.
• Partially-justified Hilbert transform (supposed to represent the instantaneous amplitude and

frequency of the signal, here applied to already transformed signals) although IMFs are nor-
mally suited to this transformation.

• Statistical study on the module of IMFs and not the frequency, here again this is a purely
empirical choice because this is where the most differences were noted.

• Establishment of a threshold whose value is mainly justified by its performance (studied by
maximizing the F1 score).

• Inapplicable to other features or machines (it would be necessary to redo a statistical study
on the transform of another signal). We only relied on the temperature.

• This method also reveals strange variations in the curve which are not for all that the oscil-
lations, therefore a certain number of false positives.

4.3.2 Advice

• Improve the statistical method of determining the threshold value.
• Test other methods of analyzing IMFs (actually their Hilbert transformation).
• Interpreting the Hilbert spectrum

4.4 LSTM

4.4.1 Limitations

The LSTM algorithm raises an alarm when the difference between the real signal and the predicted
one exceeds a certain threshold. Thus, it can be quite sensitive:

• Some anomalies are not detected. Or more precisely, within an anomaly, some parts of the
signal can raise no alarm. Hence the importance to take the orange alarm into account, that
indicates that a red alarm was raised in the near past.

• Even on a normal set, some red alarms are raised. If they don’t last and are not followed
by an orange alert, they should not be taken into account (indeed, we have decided to only
display the orange alert if the previous red one was lasting for long enough).

We only tested the algorithm on the limited data given to us: the precision could be improved by
retraining on more data. However, as we only used normal data for the training, the algorithm
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should be able to detect anomalies different from oscillations. All signals that differ significantly
from normal data can actually be detected.

We chose to train the LSTM on 3 features only. We didn’t try with all the features given. However,
we tried with 6 features, as well as with only one. The results indicate that the choice of 3 features
offers the best performance (see the annex to our notebook for more precision).

4.4.2 Advice

• Retraining the LSTM on more data could improve the precision and is necessary to adapt
our algorithm on another machine

• The hyperparameters can be changed to improve the precision, or to decrease the number of
false negatives

• At least 4 days of data must be given to our algorithm

4.5 Quantile regression

4.5.1 Limitations

The quantile prediction algorithm is known to converge only if the dataset it is trained on is infi-
nite, hence leading to a loss of precision when using a finite dataset. Another issue of this algo-
rithm is its sensibility to the hyperparameters: they were chosen according to the normal data in
order to maximize the recall and F1-Score, yet they can always be optimized.

4.5.2 Advice

• To have an adapted quantile predictor, it can also be useful to re-train it from time to time
on new normal data. Another improvement of the efficiency is linked to the memory phe-
nomenon: it has allowed us to increase the recall but decrease the precision. To adapt these
parameters, the ratio used when comparing areas can be changed.

• With our algorithm, we were only working on the temperature of the 1st bearing, however
to generalize this to another feature and therefore be able to supervise more the machines,
the algorithm can be changed. For the quantile regression new predictors can be created and
trained on other features to predict the interval for these new features.

4.6 GAN

As for the GAN algorithm, training was only performed on a single data series, thus resulting in
a potential lack of generality when applying the model. As such, it is recommended that mul-
tiple features be included when re-training the model. Hyperparameter tuning was carried out
empirically with little theoretical basis: despite appearing very suitable, it should be reconsidered
in order to obtain the best fit. Additionally, testing was sparse and, although the results obtained
were perfectly satisfactory, further testing shouldn’t be ruled out to confirm the reliability of the
model.

4.7 The voting system

The voting to determine the likeliest alarm level is performed on a basis of logical gates taking
into account every algorithm’s behaviour, notably regarding the meaning of an orange alert. We
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have decided to put all the algorithms on an equal footing for the vote but this choice remains ar-
bitrary and we could consider implementing some weighting based on the algorithms’ respective
precision stats. Furthermore, a continuous alarm level ranging from 0 to 1 would be preferable to
the discrete steps that are used to characterize the detected anomalies.
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