
 1 

	
	
	
	
	
	
	
	

	

	
	
	

	

MIG	FORENSIC	-	REPORT	
	

	

S.	DUBAIL,	P.PILI	,	A.AGREBI,	J.AMAR,	P.BERRANGER,	E.COTET,	T.DUBREUIL,	A.GILLIET,	
J.JAHAN	DE	LESTANG,	A.LAFORGUE,	A.LEUBA,	E.MARES,	K.PROVOST,	T.RENAUDIE,	

M.STOLL,	R.ZAGHROUN	

	
	
	
	

SUPERVISORS	:	Sébastien	TRAVADEL,	F.	GUARNIERI,	D.	DELAITRE,		Xavier	ALACOQUE,	
Mathis	BOURDIN	

	 	



 2 

 
I. INTRODUCTION ................................................................................................................................. 3 

I.1. THE IMPORTANCE OF DATA IN THE HOSPITAL? ............................................................................................... 3 
I.2. WHAT DOES USUAL PEDIATRIC SURGERY LOOK LIKE? ....................................................................................... 3 
I.3. THE MIG-FORENSIC APPROACH .............................................................................................................. 6 

II. METHOD .......................................................................................................................................... 7 
II.1. OBSERVATION METHODS IN THE OPERATING ROOM ....................................................................................... 7 
II.2. DATA PROCESSING ................................................................................................................................. 7 

II.2.a Pre-processing ............................................................................................................................ 8 
II.2.b. The labelling issue .................................................................................................................... 11 
II.2.c. Feature engineering and extraction ......................................................................................... 12 
II.2.d. Analysis Algorithms ................................................................................................................. 24 

III. RESULTS AND LIMITS ..................................................................................................................... 30 

III.1. UNDERSTANDING OF THE RESULTS .......................................................................................................... 30 
III.2. ALGORITHM AND DECISION MAKING ........................................................................................................ 31 

IV. CONCLUSION ................................................................................................................................ 33 

VI. APPENDIX ..................................................................................................................................... 34 

APPENDIX.1	LIST	OF	THE	SURGERIES	WE	ATTENDED: .................................................................................... 34 
APPENDIX	2	SCHEME	OF	THE	MEDICAL	REACTION	ACCORDING	TO	WHAT	THE	ALGORITHM	RESPONDS ................ 35 

VII. BIBLIOGRAPHY ............................................................................................................................. 37 

VIII. SPECIAL THANKS ......................................................................................................................... 38 

 

	 	



 3 

I. Introduction  
I.1. The importance of data in the hospital? 

In	the	hospital,	very	little	data	is	collected,	and	most	of	the	time	it	is	impossible	to	
analyze	it	properly	due	to	the	lack	of	unity	between	the	different	sources.	During	the	past	
decade,	efforts	have	been	made	to	collect	data	at	a	higher	scale	and	to	centralize	it,	but	there	
is	still	a	very	long	way	to	go.	

However,	 data	 analysis	 is	 ubiquitous	 in	 medical	 research.	 During	 a	 visit	 to	 the	
research	center	 in	oncology	of	Toulouse,	 several	 research	 teams,	 including	a	biologist,	 a	
doctor,	and	a	data	scientist,	presented	us	the	way	they	use	machine	learning	algorithms	in	
their	work.	They	used	high	quality	data	which	allowed	them	to	carry	out	high	level	research	
studies.		

In	 the	 operating	 room,	 data	 from	 the	 monitor	 is	 usually	 only	 available	
instantaneously	and	is	not	saved.	Instead,	the	evolution	of	the	parameters	is	reported	on	an	
anesthesia	sheet	that	is	kept.	Information	technology	can	sometimes	be	overlooked	in	the	
medical	field;	thus,	it	is	relevant	to	wonder	if	data	has	a	role	to	play	in	the	operating	room.	

While	statistical	learning	is	now	an	integral	part	of	the	engineering	landscape,	the	
approach	of	delegating	all	or	part	of	the	decision	to	an	algorithm	is	still	not	widespread	in	
surgery.	This	can	be	explained	on	the	one	hand	by	the	limited	amount	of	data	available;	and	
on	the	other	hand,	by	the	difficulty	to	develop	a	"responsible	AI"	in	the	broad	sense,	i.e.	to	
answer	the	ethical	questions	raised	by	unreliable	algorithms	used	for	critical	decisions.	The	
case	under	study,	submitted	by	the	pediatrician	surgery	of	the	university	hospital	center	of	
Toulouse,	addresses	those	two	aspects.	 It	consists	of	both	 :	 to	 first	develop	classification	
algorithms	to	predict	cardiac	arrests	during	pediatric	surgeries;	and	studying	how	these	
tools	may	be	accepted	in	a	professional	setting.	

	

I.2. What does usual pediatric surgery look like? 
In	the	surgical	service	of	the	pediatric	hospital,	there	are	9	operation	rooms.	5	out	

of	6	are	usually	used	simultaneously.	Each	one	has	a	specialty	among	which,	cardiac	surgery,	
orthopedics,	 visceral	 surgery,	 etc.	 The	 regulators	make	 the	 schedule	 for	 all	 the	 doctors,	
juniors,	and	nurses.	

Before	 the	 patient’s	 arrival,	 the	 anesthetic	 team	 (usually	made	 up	 either	 by	 one	
junior	doctor	or	a	nurse	and	a	supervising	anesthesiologist)	sets	up	the	tools	for	anesthesia.	
They	agree	on	a	protocol	for	the	patient	and	set	up	the	monitoring	devices.	

The	patient	arrives	and	is	transferred	on	the	operating	table.	The	anesthetic	team	
sets	up	electrodes	on	their	torso	and	an	oxygen	saturation	(SpO2)	sensor	(on	one	finger.	
Young	children	are	put	down	to	sleep	by	the	anesthetic	team	using	a	special	gas.	The	SpO2	
indicator	refers	to	the	amount	of	oxygenated	hemoglobin	in	the	blood.	Only	then,	an	intra	
veinous	(IV)	is	set	up	to	inject	Propofol	to	keep	the	patient	asleep.	Older	children	are	directly	
being	injected	Propofol,	and	the	IV	is	set	up	before	sleeping.	Analgesics	are	always	used,	
while	paralyzing	agents	like	curare	are	not	always	needed.	When	the	patient	is	asleep,	more	
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invasive	sensors	can	be	set	up,	like	in	the	femoral	artery.	The	patient	can	also	be	intubated;	
it	is	usually	the	case	for	newborns.	

When	 the	 anesthetic	 team	 is	 done	 with	 the	 patient,	 the	 surgeon	 is	 called.	 The	
information	about	the	patient	is	checked.	The	surgeon	incises	the	operating	site	and	goes	
on	with	surgical	gestures.	They	are	helped	by	the	junior	surgeon	and	a	nurse.	The	three	are	
scrubbed	in	as	opposed	to	the	rest	of	the	people	in	the	operation	room	(OR).	During	the	
entire	surgery,	the	patient	is	monitored	by	a	member	of	the	anesthetic	team	–	a	junior	doctor	
or	a	nurse	if	the	surgery	is	basic,	the	attending	physician	if	the	surgery	is	risky.	When	the	
surgery	is	basic,	the	attending	physician	navigates	between	about	three	operating	rooms.	
Monitoring	 devices	 give	 information	 like	 cardiac	 rhythm,	 blood	 pressure,	 body	
temperature,	SpO2	and	pCO2.	The	anesthetic	team	sets	up	an	alarm	threshold	for	each	of	
those	parameters.	When	an	alarm	goes	off,	the	anesthetic	team	silences	it	and	analyzes	the	
situation.	Alarms	are	frequent	and	most	of	the	time	unsignificant.	

When	the	surgery	is	over,	they	leave	the	operation	room,	and	the	anesthetic	team	
takes	the	lead.	The	anesthetist	and	its	junior	will	agree	on	a	protocol	to	wake	the	patient	up	
and	manage	 post-surgery	 care.	 Critical	 patients	 are	 directly	 transferred	 to	 the	 Pediatric	
Intensive	Care	Unit	(PICU)	or	the	Neonatal	Intensive	Care	Unit	(NICU).	Otherwise,	general	
anesthesia	is	interrupted,	but	analgesics	are	maintained.	The	anesthetic	team	looks	after	the	
patient	during	awakening	and	stimulates	them	during	the	last	stage.	As	soon	as	the	patient	
shows	signs	of	consciousness,	they	are	brought	to	the	recovery	room.	

If	another	surgery	is	scheduled	right	after,	the	rest	of	the	anesthetic	team	prepares	
the	operation	room	for	the	next	patient.	Special	caregivers	thoroughly	clean	the	operating	
room	while	the	scrub	nurse	removes	all	the	sterilized	elements	previously	used.	

	 	

figure	I.1	An	operating	room	during	a	surgery	
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The	anesthetist	and	the	surgeon	hardly	ever	communicate	apart	from	the	
beginning	and	the	end	of	the	operation.	Indeed,	those	two	periods	are	delicate	as	
the	patient	is	either	put	to	sleep	or	awakening.		

	 	

figure	I.2	Operating	room	structure	

figure	I.3	Operating	room	interaction	
diagram		
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I.3. The MIG-FORENSIC approach 
The	MIG	FORENSIC	studies	decision	support	in	real-time	surgery	according	to	two	

components,	explored	in	parallel	to	submit	an	overall	vision	of	the	problem.	The	first	one	is	
the	development	of	Machine	Learning	algorithms	based	on	real	data.	The	second	aspect	is	
both	 the	 study	 of	 the	 implementation	 of	 the	 solution	 in	 operating	 rooms	 and	 in	 the	
decisional	process,	as	well	as	the	analysis	of	data.	We	will	also	tackle	ethical	issues	raised	
by	the	introduction	of	such	tools,	by	confronting	the	performance	of	the	algorithms	with	the	
importance	of	the	decision.	To	study	these	two	objectives,	the	group	has	been	split	up	into	
two	parts	:	

The	FORENSIC-DATA	Group:	This	group	will	study	actual	patient	monitoring	data,	
recorded	during	 several	months	 in	 six	 operating	 rooms.	This	 corpus	of	 data	has	unique	
characteristics	 that	 make	 it	 difficult	 to	 analyze:	 limited	 number	 of	 cases,	 multiple	
pathologies,	varied	population	(from	babies	to	young	adults).	It	is	about	taking	control	of	
this	data	 through	 the	entire	processing	 chain,	 in	order	 to	develop	 the	 first	 classification	
algorithms	capable	of	predicting	heart	failure	during	major	cardiac	insufficiencies	likely	to	
seriously	disrupt	the	course	of	the	surgery	or	even	threaten	the	life	of	the	patient.	Signal	
processing,	statistical	learning	and	software	engineering	courses	during	the	first	week	have		
allowed	a	progressive	approach	to	this	field.	

The	 FORENSIC-Ethics	 Group:	 The	 other	 group	 has	 conducted	 non-participatory	
observations	in	operating	theatres	(Toulouse	University	Hospital,	pediatric	surgery	center).	
The	objective	was	to	model	the	decision	process	during	the	surgical	act,	and	to	determine	
under	which	conditions	and	to	what	extent	this	decision	could	be	assisted	by	a	tool	based	
on	statistical	learning.	The	experts'	confidence	in	such	a	tool	especially	depends	on	its	long-
term	 reliability,	 and	 its	 intelligibility	when	 the	prediction	 contradict	 intuition.	However,	
most	 of	 the	 time,	 the	 performance	 of	 classification	 algorithms	 increases	 at	 the	 cost	 of	 a	
significant	complexity,	until	they	turn	into	"black	boxes".	This	is	particularly	true	of	Artificial	
Intelligence	 algorithms,	 which	 have	 achieved	 the	 performance	 of	 the	 best	 experts.	 The	
students	thus	had	to	answer	the	following	question:	how	can	we	consider	implementing	a	
solution	into	operating	rooms	that	would	not	violate	the	experience	of	the	doctor?	 	
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II. Method  
II.1. Observation methods in the operating room  

In	the	operation	room,	we	were	really	focused	on	how	the	whole	system	worked,	to	
understand	what	 the	 role	 of	 each	 actor	was.	 The	 idea	was	 also	 to	 discover	 the	 relative	
importance	of	each	monitoring	parameter	and	to	learn	about	some	technical	problems	that	
the	 algorithm	 will	 face.	 For	 instance,	 arterial	 pressure	 monitoring	 is	 disturbing	 Sp02	
monitoring,	sensors	are	sometimes	poorly	placed,	the	electric	lancet	is	disturbing	cardiac	
frequency	monitoring,	etc…	We	have	also	learnt	a	lot	about	monitoring	aberrations	that	can	
be	useful	to	understand	data	properly.		

Our	goal	was	to	map	the	decisional	process	in	the	operating	room.	The	idea	was	to	
find	how	our	solution	could	be	implemented,	and	at	the	same	time	accepted.	We	wanted	to	
find	out	where	the	solution	might	stand	in	the	decisional	process.	To	do	so,	we	were	highly	
focused	on	each	micro-event,	writing	down	the	time	it	happened	and	what	the	anesthetist	
did.	Then	we	asked	the	anesthetist	what	happened	and	why	he	reacted	the	way	he	did.	

We	wanted	to	determine	the	perfect	form	for	the	tool:	which	display,	what	it	should	
tell…	The	idea	was	to	materialize	the	solution	in	order	to	be	implemented.	The	method	we	
used	was	to	wait	until	the	drowsiness	of	the	patient	to	ask	questions	that	we	had	prepared	
upstream.	There	are	a	few	questions	that	we	kept	asking	to	every	anesthetist	we	met.	For	
example:	what	is	according	to	you	a	good	tool?	How	long	in	advance	the	algorithm	should	
tell	you	about	an	anomaly	in	order	to	be	useful?	Should	it	include	sound	alarms?	The	answer	
of	the	following	questions	will	be	discussed	with	respect	to	the	results	of	our	algorithm.	

II.2. Data Processing  
Machine	Learning	is	the	use	and	development	of	computer	systems	that	are	able	to	

learn	and	adapt	without	following	explicit	instructions,	by	using	algorithms	and	statistical	
models	to	analyze	and	draw	inferences	from	patterns	in	data.	One	of	its	most	widely	used	
tools	 is	 data	 analytics	 and	 in	 particular	 predictive	 analytics.	 Predictive	 analytics	 uses	 a	
single	 tool,	 the	classifier,	 to	solve	a	wide	range	of	problems.	One	of	 these	problems	 is	 to	
determine,	 from	 its	 characteristics,	 the	 state	 of	 a	 hidden	 situation	 by	 automatically	
classifying	the	data	into	one	or	more	sets	of	classes.[2]		

We	worked	on	all	the	following	steps,	first	on	the	preprocessing	of	the	data.	During	
this	 phase,	 the	 raw	 data	 are	 carefully	 checked	 for	 possible	 errors.	 The	 objective	 is	 to	
eliminate	poor	quality	data,	i.e.	incomplete	or	incorrect	data.	The	data	must	be	made	usable	
for	 further	 processing.	 In	 a	 second	 step,	 we	must	 label	 the	 data,	 which	 corresponds	 to	
assigning	a	class	to	each	data.	Then	comes	the	Feature	Engineering.	This	is	a	process	that	
consists	 in	 transforming	 the	 raw	 data	 into	 features	 that	more	 accurately	 represent	 the	
problem	 underlying	 the	 predictive	model.	 In	 simple	 terms,	 it	 involves	 applying	 domain	
knowledge	to	extract	analytical	representations	from	the	raw	data	and	preparing	them	for	
Machine	Learning.		Only	those	features	are	then	given	to	the	classifier.	It	is	then	necessary	
to	 test	different	 classifiers	 to	 find	 the	best	one.	This	quality	varies	 from	one	problem	 to	
another.	
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II.2.a Pre-processing  

First	we	received	months	of	raw	data		from	the	CHU	of	Toulouse's	operating	rooms	and	we	
had	to	preprocess	our	data	to	clean	it,	and	remove	useless	indicators.	

	

	

The	data	we	received	are	records	from	vitals,	directly	extracted	from	the	medical	
scope	of	the	operation	room.	The	sampler	ate	is	quite	low,	as	data	is	registered	every	five	
seconds	 only.	 The	 vitals	 are	 samples	 over	 time	 of	 several	medical	 characteristics	 of	 the	
patient,	such	as	his	heart	rate,	his	oxygen	saturation,	many	different	types	of	blood	pressure,	
his	temperature,	his	respiratory	frequency,	among	others.	One	data	sample	such	as	the	one	
presented	 above	 accounts	 for	 two	 to	 three	days	of	 complete	 surgeries.	 	 They	vary	 from	
fracture	reduction,	endoscopy,	to	spinal	or	intestinal	surgery,	and	therefore	can	either	last	
one	hour	or	extend	to	five	or	six	hours.		

II.2.a.i. Mapping 

As	we	have	seen,	patient’s	data	are	incomplete,	and	full	of	gaps.	And,	even	if	it	were	
complete,	we	couldn’t	keep	hundreds	of	 characteristics.	This	would	be	 too	much	 for	 the	
classifiers.	Thus,	we	needed	to	select	the	characteristics	that	were	the	most	important	and	
that	 were	 also	 quite	 complete	 for	 most	 of	 the	 patients.	 Otherwise,	 even	 the	 gap	 filling	
process	wouldn’t	have	produced	coherent	results.	This	is	the	role	of	the	mapping	function.		

By	looking	at	the	data,	trying	to	figure	which	characteristics	were	recorded	more	
often	 than	 the	 others,	 and	 by	 talking	with	 an	 anesthetist,	 we	 eventually	 decided	which	
characteristics	we	were	going	to	keep.	Indeed,	we	kept	only	the	pulse,	the	oxygen	saturation,	
the	pressure,	the	temperature,	and	the	respiratory	frequency	of	the	patient.	

Moreover,	in	the	data	that	the	hospital	was	sending,	two	columns	correspond	to	the	
pulse:	 one	measured	directly	on	 the	patient,	 and	 the	other	deducted	 it	 from	 the	oxygen	
saturation.	Those	two	characteristics	were	relatively	close	to	each	other,	so	we	decided	to	
merge	them,	by	copying	the	first	one	and,	when	it	wasn’t	defined,	completing	it	with	the	
second	one.	Thus,	we	created	only	one	pulse	characteristic,	which	was	more	complete	than	
the	original.	We	did	the	same	thing	for	the	pressure	and	temperature.	After	the	mapping	
function	 is	 applied,	 the	 patient	 data	 is	 composed	 of	 only	 five	 characteristics	 that	 are	 as	

Figure	II.1	Cardiac	frequency	of	a	raw	data	sample	
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complete	as	possible.	In	fact,	when	we	built	the	features,	we	decided	to	manipulate	only	the	
pulse	and	the	oxygen	saturation,	hence,	 three	of	 those	 five	characteristics	have	not	been	
used	whatsoever,	above	all	because	they	were	still	not	recorded	for	every	patient.	

II.2.a.ii. The splitting process 

As	each	operation	room	file	could	contain	several	surgeries,	we	had	to	split	the	raw	
files	into	smaller	patient	files	in	order	to	classify	them.		

The	first	step	of	the	splitting	process	was	to	understand	the	data	we	were	given.	In	
fact,	 it	 appeared	 that	 the	 duration	 time	 of	 each	 operation	 could	 vary.	 Consequently,	we	
chose	to	cut	operation	room	files	based	on	cleaning	duration	between	surgeries,	to	reduce	
drastically	the	variability	we	presented	before.	Indeed,	this	parameter	is	more	standardized	
in	the	surgical	unit:	the	threshold	used	was	20	minutes	of	absence	of	data	registration(in	
red	in	figure	II.2).	

	

	

	

	

	

	

	

	

	

	

	

	

The	next	step	towards	useable	data	was	to	complete	missing	data	through	gap	filling	
methods,	and	to	smooth	it	for	further	analysis	purposes.	When	an	anomaly	or	an	attack	is	to	
be	observed,	we	cut	it	out	of	the	patient	data	so	that	the	prediction	algorithm	can	learn	on	
data	which	doesn’t	include	the	dangerous	event	itself	(in	red	in	figure	II.4),	but	the	previous	
behavior	which	may	have	led	to	it.		

In	order	 to	use	 the	 features,	 and	especially	 the	ones	with	 the	Fourier	 transform,	 the	
functions	 that	 represent	 the	 evolution	 of	 the	 pulse	 as	 a	 function	 of	 time	 must	 be	
differentiable.	However,	the	data	given	to	us	comes	with	three	problems	:	

Figure	II.2	From	a	raw	data	sample	to	a	single	patient		
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First	of	all,	the	captors	give	sometimes	wrong	measures,	which	leads	to	what	is	called	
“outliers”.	These	are	points	that	break	the	regularity	of	the	curve	during	a	very	short	time	
and	must	not	be	lumped	together	with	sudden	variations	of	the	curve	that	are	not	mistakes	
and	that	contain	information.	Such	outliers	create	new	frequencies	in	the	Fourier	transform	
that	 should	not	be	here	and	 therefore	must	be	deleted.	 In	order	 to	do	 this,	we	used	 the	
functions	rolling	mean	and	rolling	standard	deviation.	These	functions	take	a	panda	series	
as	an	argument	and	calculate	respectively	the	mean	and	the	standard	deviation	around	each	
point	using	a	certain	window	(we	chose	20	points	around	the	point	where	the	mean	and	the	
standard	deviation	are	calculated).		

Another	 problem	 is	 that	 the	 sensors	 do	 not	 deliver	 any	measure	 sometimes,	 which	
creates	some	gaps	in	the	curve.	To	tackle	this	issue,	we	use	interpolating	functions	which		do	
not	modify	the	curve	where	there	is	no	gap,	and	just	fill	the	gaps	by	using	a	certain	type	of	
interpolation	:	we	chose	linear	interpolation.	

The	last	problem	is	the	angular	points	on	the	curve.	Since	there	is	only	one	measure	each	
5	seconds,	a	short	variation	creates	angular	points,	which	need	to	be	tackled	otherwise	the	
curve	 will	 not	 be	 differentiable.	 To	 deal	 with	 this	 issue	 we	 used	 a	 convolution	 with	 a	
“hamming	window”,	which	means	we	consider	the	result	of	a	convolution	between	the	curve	
and	a	Gaussian	function.	It	is	a	famous	way	to	smooth	any	curve.	

The	result	of	these	three	methods	is	a	new	curve	that	has	the	same	values	as	the	first	
one	 but	 without	 the	 outliers,	 with	 the	 gaps	 filled	 and	 which	 has	 smoother	 variations	
between	the	different	measures	in	order	to	eliminate	the	angular	points.	

	

	

	

	

	 	

Figure	II.3	Single	patient	smoothed	data	containing	an	attack		

Figure	II.4	Final	single	patient	data	
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II.2.b. The labelling issue 

One	of	the	problems	we	faced	during	this	project	was	the	lack	of	precise	information	
about	the	outcome	of	the	surgery,	or	whether	it	went	well	according	to	the	medical	staff.	To	
train	our	algorithms,	we	had	to	manually	classify	each	patient	in	different	categories:	attack,	
anomaly	and	clean.	While	the	‘clean’	category	means	the	patient	is	safe,	both	‘anomaly’	and	
‘attack’	categories	are	associated	with	a	certain	level	of	risk.		

To	classify,	we	must	understand	how	a	surgery	works.	First	the	patient	is	put	asleep	
by	the	anesthetist,	this	corresponds	to	the	induction	period.	At	the	end	of	the	surgery,	the	
patient	is	woken	up.	Those	two	periods	correspond	to	brutal	variations	of	heart	frequency	
we	hence	must	classify	as	normal.	Then,	we	followed	Doctor	Alacoques’s	advice	to	label	the	
data.	We	looked	at	the	way	the	heart	behaves	through	the	variations	of	frequency	and	Sp02.	
Here	are	a	few	examples:	

The	mean	of	the	data	above	is	around	120	BPM,	it	means	that	the	patient	is	young,	
and	the	SPO2	is	constantly	above	90%.	We	decided	to	put	this	patient	in	the	clean	category	
because	apart	from	the	critical	periods,	his	SpO2	and	heart	frequency	remain	stable	during	
the	surgery.	

We	classified	the	previous	curve	as	an	attack	because	there	is	both	a	drop	in	heart	
frequency	and	in	SpO2,	which	is	the	symptom	of	an	attack.	We	are	particularly	careful	when	
covariations	are	observed.		

	

Figure	II.5	clean	patient	data	

Figure	II.5	attack	patient	data	
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This	patient	is	classified	as	an	anomaly	because	even	though	a	drop	of	SpO2	is	clear,	
it	does	not	correspond	to	a	significant	variation	of	frequency.		

Such	 a	 classifying	method	 lacks	 precision	 and	 objectiveness;	 indeed,	 labels	were	
often	debated	for	each	patient.		

 
II.2.c. Feature engineering and extraction  

In	order	to	enable	a	predictor	to	classify	a	patient’s	data	into	one	of	the	categories	
we	defined,	we	need	to	provide	it	with	quantified	characteristics	which	represent	the	given	
data.	

The	most	simple	ones	are	to	be	extracted	from	the	vitals	themselves:	statistics	such	
as	 the	mean,	 standard	 deviation,	 skewness,	 kurtosis,	 quartiles,	minimum	and	maximum	
values.	

However,	restricting	ourselves	only	to	these	features	would	make	us	miss	a	lot	of	
crucial	 information,	 hidden	 deeper	 in	 the	 data,	 and	 which	 need	 further	 analysis	 to	 be	
extracted.	We	therefore	turned	ourselves	to	time-frequency	signal	analysis.		

 
II.2.c.i. Features extracted from Fourier Analysis 
 

Continuous	Fourier	Transform[11]:	

A	 Fourier	 transform	 is	 a	 mathematical	 transform	 that	 decomposes	 functions	
depending	on	space	or	time	into	functions	depending	on	spatial	or	temporal	frequency.	

The	 Fourier	 transform	 of	 a	 function	 of	 time	 is	 a	 complex-valued	 function	 of	
frequency,	 whose	magnitude	 (absolute	 value)	 represents	 the	 amount	 of	 that	 frequency	
present	in	the	original	function,	and	whose	argument	is	the	phase	offset	of	the	basic	sinusoid	
in	that	frequency.		

		

Figure	II.5	anomaly	patient	data	
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Discrete	Fourier	Transform	(DFT):	

The	vitals	used	for	the	analysis	being	represented	as	a	finite	set	of	uniformly	spaced	
time-samples,	 the	 Fourier	 Transform	 needs	 to	 be	 discretized	 in	 order	 to	 compute	 the	
frequency	spectrum.	DTF	therefore	transforms	a	sequence	of	N	complex	numbers	

	

	

into	another	sequence	of	complex	numbers	

	

	

defined	by	

	

	
Short	Time	Fourier	Transform:		

Although	being	a	massively	used	transform,	DFT	has	its	flaws.	This	method	of	signal	
analysis	takes	as	an	 input	the	entire	sequence	of	data,	and	therefore	cannot	provide	any	
temporarily	located	information.	So	is	the	idea	of	a	Short-Time	Fourier	Transform	(STFT).	
It	 is	used	to	determine	the	sinusoidal	 frequency	and	phase	content	of	a	signal	while	 it	 is	
changing	over	time,	and	thus	obtain	the	variations	of	the	Fourier	Transform	analysis.	

The	idea	is	to	switch	from	the	time	domain	to	the	frequency	one	to	detect	behaviors	
which	were	not	accessible	on	the	temporal	signal,	such	as	eigenfrequencies	or	spectrum	
energies.	It	therefore	allows	us	to	quantify	the	excitation	of	the	signal	on	a	frequency	level,	
at	a	given	time,	as	an	analysis	window	is	sliding	along	the	signal	and	computes	such	features	
as	discretized	function	of	time.	

General	hypothesis	used	to	compute	the	Fourier	features:	

As	we	compute	features	from	vitals	which	are	not	all	of	the	same	size,	we	need	to	
define	 the	 same	 time	window	 to	 apply	 the	 STFTs	 for	 all	 signals.	 As	 samples	 length	 can	
stretch	 from	 30	 minutes	 to	 several	 hours,	 with	 an	 induction	 time	 of	 15	 minutes,	 two	
windows	seemed	appropriate	to	work	on	:	

	
-	From	the	beginning	to	35	minutes	of	surgery	(therefore	including	induction)	

-	From	the	end	of	the	induction	to	35	minutes	of	surgery		

The	induction	is	indeed	a	period	of	time	where	the	vitals	are	particularly	agitated,	
the	idea	was	therefore	to	let	the	door	open	for	us	to	add	it	or	not	to	the	data	the	predictors	
will	work	on.	The	window	of	the	first	35	minutes	of	surgery	seemed	the	best	compromise	
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for	us	between	the	quantity	of	 information	it	could	provide	for	Fourier	Analysis,	and	the	
amount	of	surgeries	it	could	be	compatible	with.	The	time	window	must	be	the	same	for	all	
surgeries,	and	some	last	for	less	than	40	or	50	minutes.	Therefore	choosing	a	longer	window	
would	have	led	to	trash	them	and	lose	too	much	data.	We	also	tested	some	windows	later	
than	the	beginning	on	longer	surgeries,	but	no	real	difference	was	obsesrved	in	the	results.		
However,	 the	 ideal	analysis	would	be	 to	consider	a	sliding	window,	which	updates	 itself	
every	20	to	30	minutes	while	the	surgery	is	performed,	in	order	to	analyse	the	evolution	of	
the	computed	level	of	risk,	which	hasn’t	been	done	here.		

In	practice,	the	procedure	for	computing	STFTs	is	to	divide	a	longer	time	signal,	here	
defined	 by	 the	 time	 window	 chosen,	 into	 shorter	 segments	 of	 equal	 length	 and	 then	
compute	 the	 Fourier	 transform	 separately	 on	 each	 shorter	 segment.	 This	 reveals	 the	
Fourier	spectrum	on	each	shorter	segment.	

To	 define	 the	 length	 of	 such	 segments,	 a	 compromise	 has	 to	 be	 made	 between	
temporal	and	frequency	definition.	Indeed,	a	too	short	time	segment	implies	less	data	for	
the	 Fourier	 transform	 to	 be	 computed	 on,	 and	 thus	 a	 frequency	 analysis	 less	 precise,	
whereas	 a	 too	 long	 time	 segment	 would	 imply	 a	 less	 local	 analysis	 of	 the	 signal.	 The	
frequencies	axis	has	also	been	limited	to	0,04	Hz,	as	the	coefficients	for	further	frequencies	
were	unsignificant.	

	

	

	

	

	

	

	

	

	

	

Here	are	two	examples	for	150	seconds	and	250	seconds	length	segments	:	given	the	
global	 time	 window	 the	 Fourier	 Transform	 will	 be	 computed	 on,	 a	 good	 compromise	
appears	to	be	250	seconds	length	segments.	

First	feature	group:	spectrum	energies	and	their	correlation:	

What	can	be	first	observed	is	the	variation	of	the	coefficient's	magnitude	on	the	STFT	
:	 for	some	data,	 the	higher	they	are	for	the	cardiac	 frequency,	 the	 lower	they	are	for	the	
oxygen	saturation	 :	 therefore	some	correlation	was	computed.	 In	order	 to	quantify	such	
observations,	the	coefficients	are	integrated	along	the	frequencies	axis	to	obtain	the	time	

Figure	II.6	STFT	analysis	for	a	segment	length	of	150s	 Figure	II.7	STFT	analysis	for	a	segment	length	of	250s	
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variation	of	spectrum	energies	for	both	cardiac	frequency	and	oxygen	saturation.	We	then	
proceeded	to	compute	a	Pearson	correlation	coefficient	between	the	two.	

	

To	quantify	globally	 the	signal's	 "excitation"	during	 the	chosen	 time	window,	we	
also	 integrated	 the	 spectrum	 energies	 over	 time	 to	 obtain	 a	 second	 feature,	 indexed	 as	
«	Total	spectral	energy	»	on	figure	II.9.	

However,	by	integrating	so,	we	lose	crucial	information	about	the	frequencies	of	the	
spectrums.	We	 therefore	 thought	of	a	way	 to	quantify	a	 link	between	 frequencies	of	 the	
cardiac	 frequency	 and	 the	 SpO2,	 as	 it	 could	 represent	 relevant	 information	 about	 the	
patient's	state.	

Second	feature	group	:	SpO2/FC	correlations	for	given	frequencies:	

Given	 the	 fact	 that	 for	 the	chosen	 time	window	and	time	segments	 length	 ,	STFT	
discretizes	the	limited	frequency	domain	into	26	segments,	we	computed	for	each	segment	
the	 correlation	 between	 the	 associated	 Fourier	 coefficient	 magnitude	 of	 the	 cardiac	
frequency	and	the	SpO2.	

	

	

	

	

	

	 	

Frequency Frequency Frequency 

Anomaly Attack Clean 

Figure	II.8	STFT	analysis.	 Figure	II.9	Corresponding	spectrum	densities.	

Figure	II.10	Statistical	overview	of	the	correlation	coefficient	by	frequency,	for	each	
patient’s	state	

.	
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II.2.c.ii. Features extracted from wavelets analysis 
 

Another	essential	feature	engineering	route	rested	on	wavelet	analysis.	Wavelets	are	brief,	
wave-like	oscillations	that	begin	at	zero,	oscillate,	then	return	to	zero.	Wavelets	can	be	used	
to	extract	information	from	a	signal.	

Although	FFT	is	only	localized	in	frequency,	wavelet	transform	is	localized	in	both	time	and	
frequency.	

Continuous	wavelet	transforms	(CWT)	

Continuous	wavelet	transforms	are	the	projection	of	our	signal	onto	a	continuous	function	
family	of	frequency	bands	[f,	2f]	

The	first	frequency	band	is	given	by	the	“mother”	wavelet	𝜙(𝑡).	For	example:	

	

The	next	frequency	bands	are	scaled	versions	of	this	wavelet.	Frequency	band	[1/a,	2/a]	is	
generated	by	the	“child”	wavelet:	

     𝜙8,:(𝑡) =
;
√8
𝜙 z=>:

8
{ 

The	projection	of	our	 signal	onto	these	sub-
bands	is	given	by	the	 wavelet	coefficients	𝑤8,: 	:		

    

	

Discrete	Wavelet	Transform	

In	practice,	we	can	resort	to	a	discrete	wavelet	transform	(DWT),	using	a	discrete	subset	
of	frequencies.	These	wavelets	are	calculated	with	the	parameters	𝑎 = 2>? , 𝑏 = 2>?𝑘:	

𝜙@!",@!"A(𝑡) =
1

√2>?
𝜙�

𝑡 − 2>?𝑘
2>?

�	

Morlet	Wavelet	 Mexican	Hat	Wavelet	

𝑤𝑎,𝑏 = ⟨𝑥,𝜙𝑎,𝑏⟩ = ∫𝑅𝑥(𝑡)𝜙𝑎,𝑏(𝑡)𝑑𝑡 

Figure	II.11	Examples	of	Wavelets.	
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The	(𝜙?,A)?,A	functions	form	an	orthonormal	basis	for	𝐿@(ℝ).	These	functions	create	sub-
vector	“approximation”	spaces	𝑉B ⊆ 𝑉; ⊆ 𝑉@. . . ⊆ 𝑉C,	as	well	as	sub-vector	“detail”	spaces	
𝑊B ⊆ 𝑊; ⊆ 𝑊@. . . ⊆ 𝑊C 	where:	

- 𝜙 ∈ 𝑉B	(𝜙	is	the	mother	wavelet)	

- (𝜙B,A)A	is	an	orthonormal	basis	of	𝑉B	and	(𝜙?,A)A	is	an	orthonormal	basis	of	𝑉? 	

- the	detail	spaces	𝑊? 	are	the	supplementary	sub-spaces	of	𝑉?D;:	𝑉?D; = 𝑉? ⊕𝑊? 	

One	can	prove	that	there	is	a	function	ψ	such	that:	

- (𝜓B,A)A	is	an	orthonormal	basis	of	𝑊B	and	(𝜓?,A)A	is	an	orthonormal	basis	of	𝑊?	

The	DWT	algorithm	calculates	the	projection	of	the	heart	rate	(HR)	function	𝑓	onto	each	of	
these	subspaces,	from	the	finest	resolution	𝑚	to	the	lowest	resolutions:	

𝑓 = 𝑑C + 𝑑C>;+. . . +𝑑B + 𝑓B
= ∑

AEB

DF
𝑤C,A𝜙C,A + ∑

AEB

DF
𝑤C>;,A𝜙C>;,A+. . . + ∑

AEB

DF
𝑤B,A𝜙B,A + ∑

AEB

DF
𝑠B,A𝜓B,A	

Where:		𝑤8,: = ⟨𝑓, 𝜙8,:⟩	and	𝑠8,: = ⟨𝑓, 𝜓8,:⟩	

	

The	DWT	function	allows	a	complete	reconstruction	of	𝑓	from	the	lowest	resolution	level	
0,	by	adding	the	subsequent	“detail”	coefficients	0,1,2,3,…m-1.	

In practice, the m-level DWT used in our study changed the projection of 𝑓 from the finest “ap-
proximation” level 𝑉C (with a base of (𝜙C,A)A functions) to lower-resolution levels 
𝑉B,𝑊B,𝑊;, . . . ,𝑊C>; (with the bases (𝜙B,A)A , (𝜓B,A)A , (𝜓;,A)A , . . . (𝜓C,A)A respectively). 

Figure	II.12	Illustration	of	a	DWT	wavelet	transform	
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 Thus,	both	the	heart	rate	(HR)	and	the	oxygen	saturation	(SpO2)	of	the	patient	were	de-
composed	onto	these	various	frequency	sub-bands.	This	allowed	for	comparisons	of	the	two	
signals,	and	the	implementation	of	a	number	of	features.	

SpO2	-	HR	Correlations:	

We	supposed	there	to	a	distinctive	correlation	between	SpO2	and	HR.		Since	higher	frequen-
cies	are	indicative	of	the	reactions	of	a	given	signal,	we	chose	to	analyse	the	correlations	
between	the	lower	frequencies	of	SpO2	(notably	its	𝜙B	function)		and	the	higher	frequencies	
of	HR	(such	as	its	𝜓B, 𝜓;	functions,	in	red	above).	To	do	so,	we	resorted	to	a	sliding	window	
algorithm.	For	example,	starting	with	the	first	level	of	detail	for	HR	and	SpO2,	the	window	

Figure	II.13	Function	𝑓	(projected	onto	𝑉C)	

Figure	II.14	DWT	for	function	𝑓		(with	𝑚 = 2)	
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slides	as	shown	in	the	figure	and	the	program	counts	how	many	times	the	following	sen-
tence	is	true:	the	value	of	Sp02	and	at	least	one	of	the	values	of	Pouls	are	out	of	two	times	
the	value	of	their	respective	standard	deviation.	Finally,	the	calculation	is	returned	as	a	fea-
ture.	

Heart	Rate	Variability	

We	supposed	there	to	be	a	higher	Heart	Rate	variability	in	“clean”	patients,	given	that	they	
tend	to	be	more	reactive.	This	is	the	difference	in	duration	between	heart	pumps	And	in	
order	to	quantify	the	variations	in	HR	from	patient	to	patient,	we	analysed	the	projection	
of	HR	onto	𝑊;.	We	looked	to	the	mean	crossing	rate	as	a	good	indicator	of	these	variations,	
as	mean	crossing	rate	shows	how	many	highs	and	lows	the	HR	signal	experienced.	

	

Figure	II.16	Low	Heart	Rate	Variability	

Figure	II.17	High	Heart	Rate	Variability	

Figure	II.15	Representation	of	sliding	window	
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Wavelet	Energy:	

We	also	implemented	a	feature	that	returns	the	energy	from	the	detail	of	different	DWT!s	

levels;	Given	a	discrete	signal	of		coefficients		the	energy	is:	𝐸 = ;
G
∑
AE;

G
|𝑎H|	

This	feature	can	be	applied	on	both	the	heart	rate	and	the	oxygen	saturation	of	the	pa-
tient,	but	we	focused	on	the	heart	rate.		

We	picked	up	this	feature	because	a	detail!s	energy	represents	the	quantity	of	small	var-
iations	in	a	signal	as	we	noticed	that	the	heart	rate	for	"clean”	labeled	data	was	less	event-
ful	than	the	"attack”	one.	
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II.2.c.iii. Principal Component Analysis 

The	PCA	is	a	machine	learning	method	that	processes	a	signal	with	autocorrelated	
points	 to	 determine	 the	 mutually	 independent	 components	 that	 best	 summarize	 the	
information. 	

The	goal	is	to	reduct	the	dimension	(ie.	number	of	time	points)	of	a	patient's	surgery	
and	check	if	we	can	reliably	understand	the	variation	of	the	cardiac	frequency	with	only	a	
few	points.	

In	practice,	we	trained	the	PCA	with	a	normal	set	of	clean	patients	on	the	first	twenty	
minutes	of	 a	 surgery	 (our	 initial	dimension	 is	n=200	 (200	x	5	 sec	=	20	minutes)).	The	
algorithm	uses	 the	 covariance	matrix	 of	 the	 training	 set,	 the	 algorithm	 finds	 k	<	n	new	
principal	 components	which	 are	 the	 components	 of	maximal	 variance	 of	 the	 set	whose	
information	is	greater	than	a	threshold	that	we	fixed	at	97%	of	the	initial	information.	Thus,	
the	training	set	provides	a	new	matrix	of	projection	from	the	n-dimension	space	to	the	new	
k-dimension	space.	We	found	that	 for	k=25	(approximately	 two	minutes	of	surgery)	we	
could	resume	97%	of	the	next	twenty	minutes.	The	n-k	remaining	vectors	are	set	to	zero.	

When	we	took	a	new	measure	on	which	the	algorithm	was	not	trained,	the	measure	
is	transformed	by	being	projected	in	the	k-dimension	space	and	then	projected	back	in	the	
n-dimension	space.	

This	approach	is	both	geometrical	(variables	are	represented	in	a	new	space)	and	
statistical	(the	research	of	the	best	points	to	maximize	the	variance).	

	

Obviously,	we	 lost	 information	 in	 the	process,	but	 the	ratio	of	 lost	 information	 is	
negligible	if	we	chose	the	number	of	principal	components	as	25.	

http://www.nlpca.org/pca_principal_component_analysis.html  

 Figure	II.18	Representation	of	the	PCA	method	with	the	
transformation	of	a	3-dimension	space	in	two	principal	

components	
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We	firstly	tried	to	use	the	PCA	as	a	classifier	but	the	result	were	not	satisfying.	
Thus,	 we	 chose	 to	 use	 the	 PCA	 as	 a	 feature	 by	 calculating	 the	 total	 mean	 error	 of	 the	
difference	between	each	point	of	cardiac	frequency	before	and	after	the	PCA	treatment.	It	
allowed	us	to	make	a	proper	reconstitution	of	thirty	minutes	of	an	attack	signal	with	only	
two	minutes	of	surgery.	

	

	

	

	

Figure	II.18	Ratio	of	initial	information	kept	after	the	PCA	

Figure	II.19	Comparison	of	the	cardiac	frequency	of	an	attack	
patient	with	and	without	PCA	
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We	defined	the	total	error	by:	

Where	

• m	:	Number	of	frequency	points	for	a	patient	signal	

• CF	bPCA:	Cardiac	Frequency	point	before	the	PCA	treatment	

• CF	aPCA	:	Cardiac	Frequency	point	after	the	PCA	treatment	

• ||.||2:	Euclidean	norm	

Our	problem	is	that	we	did	not	know	if	we	had	a	track	of	information	in	our	data.	The	
PCA	demonstrates	that	twenty	minutes	taken	at	the	beginning	of	the	surgery	are	
structurally	information	carriers.	
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II.2.d. Analysis Algorithms 
II.2.d.i Training and testing algorithms 
 To train our algorithms we split our dataset in two parts. A large training dataset and a 
small testing one. The first one is used to train the algorithm while the second one allows us to 
know its ability to discriminate inputs. Each dataset had the same proportion of each class. 

II.2.d.ii. Classifiers  

Random	Forest	Algorithms:	

A	 decisional	 tree	 is	 a	 mathematical	 object	 made	 of	 branches,	 nods,	 and	 leaves.	
Decision	trees	learn	how	to	best	split	the	dataset	into	smaller	and	smaller	subsets	to	predict	
the	target	value.	The	condition,	or	test,	is	represented	as	a	nod	and	the	possible	outcomes	
as	“leaves”.	This	splitting	process	continues	until	no	further	gain	can	be	made	or	a	preset	
rule	is	met	if	 the	maximum	depth	of	the	tree	is	reached	for	 instance.	It	then	associates	a	
given	input	to	a	predicted	output	by	following	the	branches	as	in	the	example	below.		

	

Each	nod	corresponds	 to	a	 test,	 and	by	 following	 the	branch	associated	with	 the	
output	value	of	each	test,	the	algorithm	can	associate	each	patient	with	a	certain	level	of	
risk.	Using	a	training	and	labelled	dataset	allows	us	to	algorithmically	build	such	a	decisional	
tree.	Buy	randomly	splitting	the	training	dataset	we	can	build	several	decisional	trees	which	
will,	 for	 each	 of	 them,	 predict	 an	 output	 label	 for	 each	 patient.	 The	 label	 that	 is	 most	
represented	by	the	set	of	trees	will	finally	be	the	output	of	the	Random	Forest.	To	build	such	
decisional	 trees	we	apply	a	recursive	algorithm	to	build	trees	that	will	minimize	a	given	
weight	function.		

Such	an	algorithm	is	very	useful	first	because	it	is	very	efficient	and	also	because	it	
is	understandable	as	it	can	return	the	features	it	mostly	uses	to	classify	the	dataset.	

K-Nearest-Neighbors:	

The	K-Nearest	Neighbor	 algorithm	 is	 in	 one	 of	 the	 oldest	 classifying	methods.	 It	
relies	on	the	representation	of	studied	objects,	here	patients	with	N	corresponding	features,	
as	vectors	in	the	N-dimensional	space	of	the	features.	Assuming	objects	of	the	same	class	
share	the	same	characteristics,	an	object	will	then	be	classified	in	regard	of	the	K	objects	

Figure	II.15	Example	of	a	decisional	tree	
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that	are	the	closest	to	it.	The	distance	between	objects	is	usually	the	Euclidean	norm,	and	K	
is	set	by	the	user.[12]	

	

For	instance,	a	1-NN	classifier	will	label	a	patient	the	same	as	the	nearest	patient	in	
the	training	set.	A	K-NN	classifier	will	chose	the	label	that	appears	the	most	among	the	K	
neighbors.		

This	algorithm	may	show	its	limits	when	one	of	the	classes	is	overrepresented.	It	is	
also	quite	sensible	to	irrelevant	features.		

The	main	parameters	of	 the	algorithm	are	 the	number	of	neighbors	 (K),	 and	 the	
weight	of	 the	different	neighbors,	which	can	be	uniform	or	 inversely	proportional	to	the	
distance	to	the	neighbor.	

	

-		a	3-NN	classifier	would	choose	the	red	class	

-	a	5-NN	classifier	would	choose	the	blue	class	

-	a		weighted	5-NN	classifier	would	choose	the	
red	class.	

	

	

	

Since	the	prediction	relies	on	the	distribution	of	objects	in	a	N-dimensional	space,	
the	data	has	to	be	normalized	before	the	classification.	

	

Multi-Layer-Perceptron:	

Neural	networks	are	models	inspired	by	the	functioning	cerebral	cortex	of	human	
beings.	It	tries	to	replicate	the	same	style	of	thought	processing.	They	are	organized	in	layers	
:		

-the	input	layer	consists	of	a	set	of	nodes	representing	the	input	features	-the	hidden	
layers,	that	have	to	intervene	in	data	transfer	between	the	input	and	output	layer		

-the	output	layer	:	in	our	case,	it	consists	of	one	node,	which	gives	a	number	between	
0	and	1.	Depending	on	the	threshold,	this	number	is	converted	to	a	 label	 :	«	clean	»	or	«	
attack	 »	 Each	 node	 (corresponding	 to	 a	 neuron)	 is	 connected	 to	 all	 the	 nodes	 from	 the	
previous	layer,	and	contains	an	activation	function	computing	the	output	of	the	node.	Each	
data	coming	from	a	previous	node	receives	a	weight.	A	bias	is	added	to	the	sum	of	weighted	
inputs	and	then	passed	to	the	activation	function.[10]	
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www.intellisystem.it/en/category/news/news-tecnologia/	

During	 the	 training	 phase,	 a	 training	 dataset	 is	 provided	 to	 the	MLP.	 As	 shown	
below,	it	adjusts	the	weights	and	the	bias,	in	order	to	recognize	the	characteristic	features.	
This	adjustment	is	made	thanks	to	backpropagation.	It	consists	of	a	gradient	descent,	where	
the	loss	function	must	be	minimized.		

	

	

	
https://www.researchgate.net/figure/A-simple-neural-network-and-the-mapping-of-the-firsthidden-layer-onto-a-43-

Weight_fig2_292077006	

Figure	II.16	A	Multilayer	Perceptron	
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When	it	is	later	given	new,	unlabeld	data,	the	neural	network	tries	to	classify	it.	If	
the	output	is	wrong,	the	network	learns	from	its	mistakes	and	improves	its	performance	
rate,	 until	 it	 becomes	 completely	 accurate.	But	 in	 order	 to	 reach	 that	point,	 it	 has	 to	be	
provided	a	lot	of	training	data,	around	5	000	minimum	as	it	is	usual	in	practice.	It	is	far	from	
being	our	case,	which	alters	the	performance	of	our	MLP.	This	is	the	reason	why	we	limited	
the	complexity	of	our	MLP	and	tried	to	control	the	weight.	

The	MLP	trains	on	two	arrays	:	X,	of	size	(n_patients,	n_features)	and	Y,	containing	
only	 the	 label	 for	each	patient.	The	 training	dataset	 is	 split	 into	a	 training	dataset	and	a	
validation	 dataset,	 allowing	 the	MLP	 to	 adjust	 the	 weights.	 After	 training,	 the	model	 is	
supposed	to	predict	labels	for	new	samples	from	the	test	dataset.		

The	hyperparameters	include	:	

	-the	activation	function	(we	used	SeLu	for	the	first	layers,	and	sigmoid	for	the	
output)		

-the	number	of	hidden	layers,	and	the	number	of	nodes	they	contain	(we	used	2	
hidden	layers,	of	30	then	11	nodes)	

	-the	loss	function	(we	used	binary	cross	entropy)		

-the	number	of	epoch	(we	used	30	epoch,	with	a	batch	size	of	1)		

-the	validation	split	ratio	(we	used	0.1)	

	-the	weight	given	to	the	«	attack	»	samples	(we	had	less	of	them	so	we	had	to	give	
them	a	bigger	weight).	We	gave	them	5	times	more	weight	than	the	«	clean	»	samples.	

	-the	optimizer	(we	used	Adam,	with	a	learning	rate	of	0.0001)	 	
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II.2.d.ii. Comparative analysis of classifiers  

Various	 classifiers	 all	 have	 their	 assets	 and	 their	 flaws,	 making	 them	
complementary.	The	«	No	free	lunch	»	theorem	proves	that	there	can’t	be	a	universally	best	
classification	algorithm.	

Using	one	classifier	rather	than	another	depends	on	the	context.	Some	factors	that	
help	deciding	which	one	is	best	are	the	size	of	the	training	dataset,	the	number	of	features,	
the	correlation	between	features	and	how	likely	they	are	to	overfit.	

The	 K-NN	 is	 robust	 to	 noise	 in	 training	 dataset,	 and	 effective	 in	 case	 of	 a	 large	
training	dataset.	But	the	computation	time	is	high,	and	we	have	to	determine	the	type	of	
distance	used	as	well	as	the	value	of	K.	It	provides	with	typical	examples	which	are	valuable	
for	interpretation.		

The	Random	Forest	can	provide	understandable	explanation	over	 the	prediction,	
which	is	especially	relevant	in	the	context	of	surgery.	Health	practitioners	have	to	be	able	
to	understand	how	the	algorithm	decides,	 in	order	 to	 take	a	decision.	 It	can	handle	high	
dimensional	spaces.	Random	Forest	works	well	with	a	mixture	of	numerical	and	categorical	
features.	However,	it	is	prone	to	outliers	and	tends	to	overfit	if	trees	are	grown	too	deep.	It	
also	doesn’t	perform	well	when	some	features	depend	on	other	features	(this	makes	the	
trees	of	the	forest	less	independent	from	each	other).	

MLP	(Multi-layer	perceptron)	is	a	type	of	neural	network.	It	outperforms	Random	
Forest	when	there	is	sufficient	training	data.	However,	it	doesn’t	provide	any	explanation	
over	the	decision,	which	make	the	features	non	interpretable.	It	is	also	more	difficult	to	use	
and	implement,	considering	the	number	of	hyperparameters.		

II.2.d.iii. Finding the best classifier for our case  

What	criteria	should	our	classifier	maximize	?		

From	what	we	heard	from	the	doctors,	the	priority	was	to	recall	all	the	attack	cases	
and	not	missing	any,	rather	than	prioritize	accuracy	and	potentially	missing	attacks.	The	
simple	conclusion	to	this	is	that	we	would	rather	have	many	alarms,	as	long	as	we	get	all	the	
problematic	cases.	Indeed,	we	must	keep	in	mind	that	our	algorithm	is	a	tool	to	help	doctors,	
not	to	replace	them,	so	providing	the	team	with	a	new	alert	signal	seems	more	coherent.	We	
will	then	have	to	try	to	maximize	the	Recall	variable,	even	if	it	means	losing	a	little	bit	of	
Attack	Accuracy,	variables	that	we	will	study	in	the	next	paragraphs.	

Prediction	time:	

In	our	case,	the	prediction	is	made	in	the	first	based	on	the	data	20min,	during	the	
1st	twenty	minutes	to	predict	the	level	of	risk	for	the	rest	of	the	surgery.	The	prediction	time	
appeared	to	be	of	primary	importance	in	all	the	interactions	we	had	with	doctors	on	this	
subject.	Many	choices	may	be	different	depending	on	this	parameter	alone:	for	example,	if	
the	 prediction	 time	 is	 less	 than	 one	 minute,	 the	 anesthetists	 will	 not	 have	 the	 time	 to	
anticipate	and	alleviate	the	problem.	

The	recall	variable:	it	represents	the	sensitivity	of	the	algorithm,	that	is	to	say		
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As	stated	in	the	short	introductory	paragraph,	the	Recall	variable	must	be	maximized	in	our	
case.	

Attack	accuracy	variable	:	it	represents	the	positive	predictive	value	of	the	algorithm,	that	
is	to	say	:	

	

As	stated	in	the	short	introductory	paragraph,	the	Attack	Accuracy	variable	must	be	
maximised,	but	is	not	as	important	as	the	Recall	variable,	so	it	can	potentially	be	lowered	in	
favour	of	an	increase	in	the	Recall	variable.	As	a	result,	the	best	classifier	for	our	case	should	
respect	such	criteria.		

The	GridSearch	Method		

The	 step	 following	 feature	 engineering	 was	 finding	 an	 effective	 classifier.	 That	
meant	 running	 through	 all	 the	 combinations	 of	 classifiers,	 classifier	 parameters	 and	
features,	and	recording	their	performance:	accuracy,	recall,	precision,	and	f1-score.	Such	an	
algorithm	being	extremely	time-consuming,	we	decided	to	regroup	features	that	we	thought	
were	sides	of	the	same	information.	For	instance,	all	the	features	that	relied	on	the	Fourier	
transform	 were	 always	 used	 simultaneously.	 The	 results	 were	 printed	 on	 a	 csv	 sheet	
showing	for	each	classifier	the	features	that	were	used	and	its	score.	Here	is	what	the	output	
looks	like	for	a	few	features:	

The	information	gathered	by	the	other	team	led	us	to	choose	the	classifier	having	the	
highest	recall	and	a	decent	precision,	which	was	a	Random	Forest	algorithm	with	the	
following	characteristics:		

The	best	performances	proved	to	be	the	Random	Forest	with	the	following	characteristic,			

Classifier:	Random	Forest	

Parameters:	class_weight	=	‘balanced’,	max_depth	=	5	

Used	features:	mean_pouls,std_pouls,	mean_SpO2,	std_SpO2,	energy_1,	energy_2,	energy_3,	
energy_4,	moment3_Pouls,	moment4_Pouls,	moment3_SpO2,	moment4_SpO2	

	 The	mean	and	standard	deviation	are	easily	understood	by	the	practitioners,	as	
opposed	to	energies.		 	
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III. Results and limits 
III.1. Critical view of the results   
	 In	order	to	test	the	algorithm,	we	tried	to	make	it	predict	the	label	between	Anomaly	
or	 Attack	 (in	 the	 same	 category)	 and	 Clean.	 The	 dataset	 used	 for	 the	 test	 contains	 the	
operations	of	the	month	of	November,	it	is	a	new	dataset	that	the	algorithm	had	never	seen.		

These	results	were	 found	while	 trying	 to	maximize	recall,	however	 the	precision	
value	 is	 relatively	 satisfying	 too.	 While	 they	 might	 appear	 insufficient,	 they	 must	 be	
considered	qualitatively.	 Indeed,	 the	performance	of	 the	algorithm	 is	better	 than	what	a	
random	system	would	do	if	it	considered	the	proportion	of	attacks	among	all	the	operations.	
Moreover,	for	better	understanding	of	the	results,	we	looked	at	the	false-positive	cases	as	
the	following	one.	It	showed	that	such	cases	are	ambiguous	ones	that	even	humans	struggle	
to	 classify.	 These	 are	 potentially	 critical	 evolution	 of	 vital,	 but	 it	 is	 hard	 to	 conclude	
regarding	their	label	without	any	further	information	on	the	outcome	of	the	surgery.	

	

	

It	showed	that	these	cases	are	ambiguous	ones	that	even	human	struggle	to	classify.	
Furthermore,	the	data	we	studied	consists	of	only	two	parameters	sampled	every	5	seconds,	
which	 is	 extremely	poor.	Any	 relevant	 result	 is	 then	be	an	 important	 step	 forward,	 that	
proves	the	interest	of	going	deeper	in	data	collection.	It	means	that	there	is	undeniably	some	
relevant	information	to	be	studied,	which	has	not	always	been	obvious.		

The	 algorithm	 is	 interpretable	 since	 it	 provides	 the	main	 features	 on	which	 it	 is	
based	when	it	operates.	Those	features	show	structural	information	but	differ	from	usually	
used	features	by	doctors.	However,	not	all	these	characteristics	are	currently	visible	to	a	
doctor	 on	 a	 scope.	 Moreover,	 our	 algorithm	 uses	 only	 the	 first	 thirty	 minutes	 of	 the	
operation,	unlike	the	medical	team,	which	is	more	reactive	and	will	necessarily	remain	alert	
throughout	the	operation.	We	observe	a	difference	between	the	reasoning	of	our	tool	and	
human	 reasoning,	 which	 is	 very	 interesting	 since	 we	 place	 ourselves	 in	 a	 predictive	
perspective	which	differs	from	medical	empiricism.	Indeed,	our	algorithm	in	the	first	phase	

Figure	III.1	False	positive	data	
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(preceding	 intensive	 darta	 collection)	 could	 be	 used	 for	 knowledge	 building	 regarding	
accidents	in	operating	rooms.		

Hence,	the	data	collected	by	our	algorithm	could	be	used	post-surgery	to	potentially	
respond	to	misunderstandings	following	an	anomaly	in	an	operating	room,	or	to	confront	
its	 features	on	decision	 function	 to	medical	 assessment.	 That	way,	by	 looking	at	 a	more	
predictive	lens	through	our	algorithm	data,	we	might	change	the	paradigms	of	medicine.	

The	fact	that	poor	data	gave	such	results	is	extremely	encouraging	for	the	future	of	
this	approach.	 Indeed,	 if	data	collecting	 is	 improved,	 the	results	might	become	excellent.	
Consequently,	 it	 is	 possible	 to	 imagine	 a	 situation	 where	 the	 algorithm	 is	 extremely	
performant	to	predict	cardiac	attacks.	In	this	case,	we	submitted	a	model	of	the	utility	of	the	
algorithm	depending	on	its	performances	(cf	appendix.2)	

However,	for	the	algorithm	to	be	efficiently	used	and	to	prove	its	relevance,	we	need	
to	understand	how	anesthetists	will	include	the	algorithm	in	their	decision	process.	

	

III.2. Algorithm and decision making  
The	 prediction	 algorithm	 is	 supposed	 to	 be	 used	 by	 the	 anesthetist	 who	 is	

responsible	for	the	patient’s	safety	during	the	time	of	the	operation.		They	are	responsible	
for	 the	 induction	 and	 awaking	 phase.	 They	 control	 the	 anesthesia	 with	 the	 artificial	
respirator,	 and	 medicine	 delivered	 through	 perfusions.	 They	 spend	 time	 watching	 the	
patient’s	ECG,	oxygen	saturation,	arterial	pressure,	acapnia,	respiratory	frequency,	but	also	
the	patient’s	appearance,	especially	the	way	they	breath	and	the	color	of	their	face.	

Figure	III.2	Decision	making	in	the	operating	room	without	the	algorithm	



 32 

	

Our	observation	showed	that	the	anesthetists	are	the	ones	who	receive	information	
about	the	patient	and	know	how	to	deal	with	contradictory	information	and	how	to	react.	
The	algorithm	should	then	have	the	same	role	 in	the	room	as	the	data	from	the	monitor,	
alerting	the	anesthetist	by	collecting	data	from	the	patient.		

However,	the	decisional	process	of	the	anesthetist	is	supposed	to	be	modified	by	the	
system.	 We	 imagined	 three	 possible	 reactions	 from	 the	 anesthetist:	 indifference,	
anticipation,	and	action.	

	

	 	

Figure	III.2	Decision	making	in	the	operating	room	with	the	algorithm	
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IV. Conclusion 
This	preliminary	work	shows	the	interest	of	data	in	the	surgery	block	and	open	the	door	

to	more	intensive	data	collection,	 indeed,	the	work	will	continue	from	January	on	with	a	
team	of	2nd	year	student	from	Mines	Paris	with	data	sampled	at	2	miliseconds.		`	

To	conclude	we	would	like	to	highlight	the	ethical	considerations	such	an	engineering	
solution	raises		

The	Ethics	Guideline	on	trustworthy	AI[1]	by	the	independent	high-level	expert	group	
on	AI,	came	up	in	2019	with	4	principles	that	a	trustworthy	AI	must	respect:	

Respect	of	human	autonomy		

Prevention	of	harm		

Fairness		

Explicability		

A	quick	thought	on	engineering,	tells	us	that	failure	is	an	integral	part	of	engineering	
and	that	the	efficiency	of	a	solution	is	to	be	considered	according	to	the	context.	The	context	
in	 which	 we	 are	 working	 is	 unfriendly:	 data	 is	 lacking,	 noisy	 and	 there	 are	 multiple	
pathologies.	 Now,	 knowing	 the	 defects	 the	 final	 solution	might	 have,	 is	 it	 acceptable	 to	
influence	anesthetists	in	their	choice	on	such	a	critical	type	of	decision?	

First,	we	learned	that	the	anesthetists	will	not	immediately	inject	medicine	to	the	
patient	after	an	alert	but	rather	get	prepared.	There	is	no	risk	for	the	patient	to	be	directly	
impacted	by	a	mistake	from	the	algorithm:	the	prevention	of	harm	seems	to	be	respected.	
Moreover,	anesthetists	are	used	to	dealing	with	multiple	monitors	and	alerts,	they	therefore	
have	the	capacity	to	integrate	the	information	to	decide,	without	being	blinded	by	it.	It	can	
be	useful	to	remind	that	the	tool	will	be	used	for	information	purposes	only,	the	idea	is	not	
to	replace	anesthetists	but	to	assist	and	help	them	during	the	decision	process.	Thus,	the	
respect	 of	 human	autonomy	 is	 considered.	As	 the	 algorithm	might	be	 able	 to	 tell	which	
feature	was	used	to	make	a	decision,	the	issue	of	the	explicability	could	be	solved.		

Apart	from	that,	the	impact	of	the	algorithm	is	still	not	to	be	undermined	as	it	could	
catch	anesthetists’	attention	for	no	reason,	and	because	repetitions	of	alerts	might	diminish	
their	compliance	with	the	tool.	Another	adverse	effect	is	the	fact	that	the	compliance	on	the	
tool	 might	 be	 too	 great	 that	 when	 it	 misses	 a	 problem,	 anesthetists	 diminish	 their	
concentration	 because	 there	 is	 no	 alert.	 The	 issue	 of	 the	 responsibility	 of	 the	 tool	 if	
something	goes	wrong	 is,	 then,	 still	 to	be	raised	as	 it	 influences	 the	practitioner	 in	 their	
choice.	The	creator	of	the	tool	might	thus	be	held	responsible.	Moreover,	as	the	algorithm	is	
based	on	the	quite	subjective	labelling	made	from	only	3	curves	(cardiac	frequency,	oxygen	
saturation	 and	 temperature)	 sometimes	 missing,	 the	 validity	 of	 the	 algorithm	 can	 be	
questioned.	

	 Throughout	our	journey	through	the	operating	theatres,	we	discovered	skepticism	
among	health	professionals	towards	new	technologies,	especially	for	old-style	practitioners	
who	emphasize	clinical	signs	over	monitor	signs.	As	a	result,	the	real	challenge	for	the	tool	
could	be	to	be	accepted	and	used	by	practitioners.[5]	 	
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VI. Appendix 
Appendix.1	List	of	the	surgeries	we	attended:		

● hypospadias	repair	1	(11/22	–	OR	5	–	3-year-old	patient)	

● hypospadias	repair	2	(11/22	–	OR	5	–	3-year-old	patient)	

● exploratory	 laparotomy	with	 two	anastomoses	(11/22	–	OR	5	–	5-month-old	pa-
tient)	

● central	line	insertion	(11/22	–	OR	6	–	9-year-old	patient)	

● chest	drainage	(11/22	–	OR	6	–	8-year-old	patient)	

● heart	surgery	(11/23	–	OR	4	–	4-year-old	patient)	

● ablation	of	osteosynthesis	material	(11/23	–	OR	1	–	15-year-old	patient)	

● ablation	of	osteosynthesis	material	(11/23	–	OR	2	–	29-year-old	patient)	

● pyloric	stenosis	repair	(11/23	–	OR	1	–	1-month-old	patient)	

● undescended	testicle	repair	1	(11/23	–	OR	5	–	1	year-old-patient)	

● undescended	testicle	repair	2	(11/23	–	OR	5	–	8	year-old-patient)	

● inguinal	hernia	repair	(11/23	–	OR	5	–	6-month-old	patient)	

● male	circumcision	1	(11/23	–	OR	5	–	5-year-old	patient)	

● bronchoalveolar	lavage	1	(11/24	–	OR	8	–	3-year-old	patient)	

● bronchoalveolar	lavage	2	(11/24	–	OR	8	–	15-year-old	patient)	

● esophageal	dilation	(11/24	–	OR	8	–	2-year-old	patient)	

● cleft	lip	repair	(11/24	–	OR	5	–	2-month-old	patient)	

● JJ	stent	insertion	(11/24	–	OR	6	–	9-year-old	patient)	

● fiberoptic	endoscopy	with	airway	management	(11/24	–	OR	8	–	2-month	old	pa-
tient)	

● aortic	coarctation	repair	(11/25	–	OR	4	–	14-day-old	patient)	

● male	circumcision	2	(11/25	–	OR	6	–	3-year-old	patient)	

● cleft	palate	repair	(11/25	–	OR	6	–	6-month-old	patient)	
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Appendix	2	Scheme	of	the	medical	acceptance	as	a	function	of	medical	performance.	
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Here	 a	 distinction	 is	 made	 between	 several	 levels	 of	 recall	 and	 anticipation	 to	
consider	what	the	practitioner's	reaction	might	be.	At	the	end	of	the	day,	it	turns	out	that	
less	 than	 a	 minute's	 anticipation	 is	 completely	 useless	 during	 surgery	 because	 the	
practitioner	 will	 not	 have	 enough	 time	 to	 anticipate.	 Similarly,	 with	 a	 50%	 recall,	 the	
confidence	level	might	be	too	low	to	be	considered	a	serious	threat.	The	confidence	level	
increases	with	recall,	and	the	quality	of	the	reaction	with	the	time	to	anticipate.	However,	a	
line	between	a	useful	and	a	useless	tool	according	to	these	two	characteristics	is	difficult	to	
draw	and	really	depends	on	the	anaesthetist's	level	of	confidence	in	the	tool.	

Thus,	it	is	necessary	to	specify	the	two	main	possible	uses	of	our	tool	in	this	context	:	

The	 first	 is	obviously	 the	one	 requested	by	 the	 customer;	 active	use	 in	an	operating	
room	to	predict	accidents.	

However,	there	is	another	underlying	solution	that	stems	from	a	reflection	on	the	lack	
of	 data,	 the	 subsequent	 use	 in	 research	 and	 knowledge	 building.	 Indeed,	 if	 the	
characteristics	are	poor,	the	final	solution	is	likely	to	stay	outside	of	the	operating	room	and	
only	be	used	for	educational	purposes.		

Mettre	le	rouge	dans	la	conclusion.	

For	our	scheme,	it	is	necessary	to	specify	the	quantities	that	are	used	in	order	to	discern	
the	different	cases:	

T	is	the	prediction	time	of	our	algorithm.	
The	degree	of	interpretation,	which	takes	the	values	0,	1	and	2.	Degree	0	is	equivalent	

to	 a	 silent	 algorithm;	 giving	no	 explanation.	Degree	1	 is	 equivalent	 to	 an	 algorithm	 that	
returns	partial	pieces	of	feature,	or	whole	but	obscure	features	but	may	seem	obscure	to	an	
uninformed	 physician	 (typically:	 6th	 coefficient	 of	 the	 Fourier	 series	 decomposition	 of	
SpO2).	 Finally,	 degree	2	 is	 equivalent	 to	 an	 algorithm	 that	 delivers	 simple	 and	 accurate	
information	about	what	it	has	been	based	on,	allowing	doctors	to	react	in	an	efficient	way.	
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